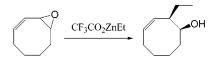
2002 Vol. 4, No. 6 905–907

Addition of Organozinc Species to Cyclic 1,3-Diene Monoepoxide


Song Xue,* Yali Li, Kaizhen Han, Wen Yin, Meng Wang, and Qingxiang Guo

Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China

xuesong@ustc.edu.cn

Received December 20, 2001

ABSTRACT

The reaction of organozinc reagents (ZnEt₂, ZnPh₂) with cyclic 1,3-diene monoepoxides in the presence of CF₃COOH gave the *cis*-addition products. Lewis acids such as (CF₃CO₂)₂Zn and ZnCl₂ mediated the nucleophilic addition of ZnEt₂ to cyclooctadiene monoepoxide with high stereoselectivity.

Vinylic epoxides are valuable synthetic building blocks, and their reactions have been extensively investigated.¹ The addition of organometallic reagents to vinylic epoxides is a fundamental preparation of allylic and homoallylic alcohols.² Grignard reagents,³ allylstannanes,⁴ and alkyllithiums⁵ generally provide 1,2-addition products, and copper reagents⁶ and copper-catalyzed organozinc reagents⁷ yield 1,4-addition products. Mixtures of regio- and/or stereoisomers are often obtained in favor of a *trans* relationship between the hydroxy group and the substitutent. In contrast, the *syn* addition of carbon nucleophiles toward epoxide has received less attention.⁸

Recently, Zaidlewicz and Krzeminski reported that 1,2syn addition was favored in the reaction of allyldiethylborane with six-, seven-, and eight-membered 1,3-diene monoepoxide. The ratio of *cis/trans*-1,2-addition was up to 72/28 when 3,4-epoxycyclohexene reacted in ether at room temperature. α -*C*-Glycosides were also synthesized by the *syn* addition of aluminum or boron reagents to glycal epoxides. We now wish to report a stereoselective addition of organozinc species to cyclic 1,3-diene monoepoxides.

Our investigation started with 1,3-cyclooctadiene monoepoxide 1c as a substrate. The active organozinc species XZnR could be generated by reaction of ZnR_2 (R = Et, Ph) with acids (HX). When a solution of organozinc CF_3CO_2 -ZnEt and substrate 1c in CH_2Cl_2 was stirred at 0 °C for 2 h,

^{(1) (}a) Trost, B. M.; McEachern, E. J.; Toste, F. D. *J. Am. Chem. Soc.* **1998**, *120*, 12702. (b) Johannes, C. W.; Visser, M. S.; Weatherhead, G. S.; Hoveyda, A. H. *J. Am. Chem. Soc.* **1998**, *120*, 8340. (c) Caldwell, C. G.; Derguini, F.; Bigge, C. F.; Chen, A. H.; Hu, S.; Wang, J.; Sastry, L.; Nakanishi, K. *J. Org. Chem.* **1993**, *58*, 3533. (d) Tueting, D. R.; Echavarren, A. M. and Stille, J. K. *Tetrahedron* **1989**, *45*, 979.

⁽²⁾ Gorzynski-Smith, J. Synthesis 1984, 629.

^{(3) (}a) Söderberg, B. C.; Austin, L. R.; Davis, C. A.; Nyström, J. E.; Vagborg. J.O. *Tetrahedron* **1994**, *50*, 61. (b) Bloodworth, A. J.; Curtis, R. J.; Spencer, M. D.; Tallant, N. A. *Tetrahedron* **1993**, *49*, 2729.

⁽⁴⁾ Naruta, Y.; Maruyama, K. Chem. Lett. 1987, 963.

⁽⁵⁾ Wieland, D. M.; Johnson, C. R. J. Am. Chem. Soc. 1971, 93, 3047.
(6) (a) Marshall, J. A. Chem. Rev. 1989, 89, 1503. (b) Marshall, J. A.;

Crute, T. D., III; Hsi, J. D. *J. Org. Chem.* **1992**, *57*, 115. (7) (a) Lipshutz, B. H.; Woo, K.; Gross, T.; Buzard, D. J.; Tirado, R. *Synlett* **1997**, 477. (b) Badalassi, F.; Crotti, P.; Macchia, F.; Pineschi, M.; Arnold, A.; Feringa, B. L. *Tetrahedron Lett.* **1998**, *39*, 7795.

⁽⁸⁾ Trost, B. M.; Molander, G. A. J. Am. Chem. Soc. 1981, 103, 5969.

⁽⁹⁾ They found a novel rearrangement reaction to occur in the reaction of allyldiethylborane with 5- membered rings. Zaidlewicz, M.; Krzeminski, M. P. *Org. Lett.* **2000**, *2*, 3897.

⁽¹⁰⁾ Rainier, J. D.; Cox, J. M. Org. Lett. 2000, 2, 2707.

⁽¹¹⁾ **Addition of CF₃COOZnEt to 1c.** To a solution of ZnEt₂ (1 M in *n*-hexane, 1.2 mL, 1.2 mmol) in 2 mL of CH₂Cl₂ at 0 °C was added CF₃-COOH (92 µL, 1.2 mmol) very slowly via syringe under N₂. After 30 min of stirring, a solution of **1c** (124 mg, 1.0 mmol) in CH₂Cl₂ (1 mL) was added. The mixture was stirred for 2 h at 0 °C and then quenched with saturated aqueous NH₄Cl. The mixture was extracted with Et₂O (3 × 10 mL), washed with brine, dried (Na₂SO₄), and concentrated. Column chromatography afforded 102 mg (66%) of homoallylic alcohol *cis*-**2c**. GC—MS analysis of the crude reaction mixture revealed three peaks: **1c** (8%), 3-cycloocten-1-one of the rearrangement product from epoxide (19%), and *cis*-**2c** (73%).

⁽¹²⁾ The stereochemistry of *cis-***2c** was assigned from a similarity of its NMR spectrum to that of the known *cis-*2-allyl-3-cycloocten-1-ol in ref 9. (13) Crystal data of *cis-***2c**: $C_{10}H_{18}O$, crystal system, tetragonal; a=22.583(2) Å, b=22.583(2) Å, c=7.6273(9) Å, V=3889.9(7) ų; space group, I4(1)/a; Z=16; F(000)=1376; $\mu=0.065$ mm⁻¹; full matrix least-squares refinement on F^2 ; residuals, R=0.042, wR₂ = 0.0826.

only 1,2-addition product *cis***-2c** was obtained with 66% yield (Table 1).¹¹ The relative stereochemistry between the hydroxy

Table 1. Addition of $ZnEt_2$ to Epoxides in the Presence of Acids

entry	epoxide	solvent	acid (HX)	yield ^a (%)
1	1c	CH ₂ Cl ₂	CF ₃ CO ₂ H	66
2	1c	toluene	CF_3CO_2H	52
3	1c	<i>n</i> -hexane	CF_3CO_2H	7
4	1c	Et_2O	CF_3CO_2H	0
5	1c	CH_2Cl_2	CCl ₃ CO ₂ H	20
6	1c	CH_2Cl_2		0
7	1a	CH_2Cl_2	CF_3CO_2H	58
8	1b	CH_2Cl_2	CF_3CO_2H	63
^a Isolate	ed yields.			

group and the ethyl group was assigned on the basis of the proton NMR spectrum.¹² The relative configuration was further confirmed as *cis* by X-ray analysis of the crystal structure (Figure 1).¹³ The *trans* isomer of the 1,2-addition

Figure 1. Crystal structure of cis-2c.

product was not observed by ¹H NMR. The choice of the solvent was crucial to the success of the reaction. CH₂Cl₂ and toluene were suitable solvents. The use of a more nonpolar solvent such as hexane gave a 7% yield of *cis-2c*. However, Et₂O failed to result in the reaction as a result of coordination to Lewis acidic zinc species thereby attenuating its reactivity. The reactivity of the organozinc species XZnEt was highly dependent on the X group. The species CCl₃-CO₂ZnEt, in place of CF₃CO₂ZnEt, only afforded a 20% yield using similar reaction conditions. In addition, when acid HX was anhydrous TsOH or CH₃COOH, no reaction occurred after stirring for 2 h at 0 °C.

Similarly, the reaction of CF₃CO₂ZnEt with cyclopentadiene and 1,3-cyclohexadiene monoepoxides gave the same type of *cis*-1,2-addition with 56% and 63% yield, respectively. These results obtained show that ZnEt₂ is an effective nuclephile to cyclic 1,3-diene monoepoxide in the presence of CF₃COOH.¹⁴ The byproducts of these reactions were the rearrangement products of monoepoxides of cyclic dienes, suggesting that organozinc species XZnEt have Lewis acid character in these reactions.

In addition to ZnEt₂, ZnPh₂ underwent the same reaction to give exclusively **3c** in 74% yield when CF₃CO₂ZnPh reacted with **1c** in CH₂Cl₂ at 0 °C for 5 h. However, cyclopentadiene and 1,3-cyclohexadiene monoepoxides gave both 1,2- and 1,4-regioisomers when reacting with CF₃CO₂-ZnPh (Table 2). The 1,4-regioisomer was assigned from the

Table 2. Addition of $ZnPh_2$ to Epoxides in the Presence of CF_3CO_2H

entry	epoxide	3/4 ^a	yield ^b (%)
1	1a	39/61	81
2	1b	25/75	79
3	1c	100	74

^a Determined by GC-MS analysis. ^b Isolated yields.

chemical shift of the carbinol proton owing to its allylic character. On the other hand, the *cis* stereochemistry of **4a**, for example, is supported by the relative value of the chemical shifts of H_c (δ 2.87) and H_d (δ 1.58). The difference between H_c and H_d is larger than 1 ppm, demonstrating that the product is *cis*-1,4-disubstituted cyclopentene. ¹⁵

Encouraged by this initial result, the reaction was investigated using Lewis acids in place of acid HX, since organozinc species XZnEt could be formed by the reaction of ZnEt₂ with ZnX₂. As shown in Table 3, 60% yield of **2c** could be obtained when ZnEt₂ reacts with (CF₃CO₂)₂Zn, which is formed in situ by the reaction of ZnEt₂ with CF₃-COOH. Analysis of the crude reaction mixture using GC-MS shows that a small amount of 1,4-addition product is always obtained under the reaction conditions used. It is worth noting that ZnCl₂ was found to be reactive under these reaction conditions, affording good yield (78%) of **2c** but with a mixture of stereoisomer. The same reaction carried out with ZnBr₂ gave the homoallylic alcohol **2c** in a low yield (39%) with a decrease in both stereoselectivity and regioselectivity.

906 Org. Lett., Vol. 4, No. 6, 2002

⁽¹⁴⁾ Shi reported that CF₃CO₂H accelerated the cyclopropanation of olefins. Yang, Z. Q.; Lorenz, J. C.; Shi, Y. *Tetrahedron Lett.* **1998**, *39*, 8621.

⁽¹⁵⁾ Marino, J. P.; de la Pradilla, R. F.; Laborde, E. J. Org. Chem. 1987, 54, 4898.

Table 3. Addition of ZnEt2 to 1c Mediated by Lewis Acids

entry	ZnEt ₂ (equiv)	Lewis acid (equiv)	yield 2c ^a (cis/trans) ^b	2c/5c ^c
1	0.6	(CF ₃ CO ₂) ₂ Zn (0.6)	60 (100)	99/1
2	0.6	$(CF_3CO_2)_2Zn$ (1.0)	53 (100)	98/2
3	1.2	$(CF_3CO_2)_2Zn$ (0.6)	36 (100)	98/2
4	1.2	$(CF_3CO_2)_2Zn$ (1.0)	52 (100)	98/2
5	0.6	$ZnCl_2$ (0.6)	26 (91/9)	97/3
6	1.2	$ZnCl_2$ (0.6)	52 (88/12)	94/6
7	1.2	$ZnCl_2$ (1.0)	78 (94/6)	94/6
8	1.2	$ZnBr_2$ (1.0)	39 (80/20)	89/11

 a Isolated yields. b Determined by 1H NMR [cis (δ 3.81), trans (δ 3.52), CH-OH]. c Determined by GC-MS analysis.

The *syn* addition appears to be occurring via the coordination of zinc to oxygen of the epoxide and intramolecular transfer of R group. The mechanism is closely related to that proposed by Rainier and Cox in their work⁹ and outlined in Scheme 1. We considered the transfer of R group from XZnR occurred from the same face as the oxygen of epoxide and resulted in a *syn* addition, since organozinc reagents XZnR could act as a Lewis acid system as well as being nucleophilic in character.

In conclusion, we have demonstrated a new nucleophilic ring-opening reaction of cyclo-1,3-diene monoepoxide using

organozinc species. The *cis*-addition products were obtained when reacting with CF₃CO₂ZnEt, which is formed by mixture of ZnEt₂ with CF₃CO₂H or (CF₃CO₂)₂Zn. Additional studies of the scope are in progress.

2

Acknowledgment. We thank University of Science and Technology of China for financial support and the Natural Science Foundation of Anhui province.

Supporting Information Available: Spectroscopic data for all new products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL017279O

Org. Lett., Vol. 4, No. 6, 2002